Large-Scale Movement within the Voltage-Sensor Paddle of a Potassium Channel—Support for a Helical-Screw Motion

نویسندگان

  • Amir Broomand
  • Fredrik Elinder
چکیده

The size of the movement and the molecular identity of the moving parts of the voltage sensor of a voltage-gated ion channel are debated. In the helical-screw model, the positively charged fourth transmembrane segment S4 slides and rotates along negative counter charges in S2 and S3, while in the paddle model, S4 carries the extracellular part of S3 (S3b) as a cargo. Here, we show that S4 slides 16-26 A along S3b. We introduced pairs of cysteines in S4 and S3b of the Shaker K channel to make disulfide bonds. Residue 325 in S3b makes close and state-dependent contacts with a long stretch of residues in S4. A disulfide bond between 325 and 360 was formed in the closed state, while a bond between 325 and 366 was formed in the open state. These data are not compatible with the voltage-sensor paddle model, but support the helical-screw model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the opening of voltage-gated ion channels.

Voltage-gated ion channels are key players in fast neuronal signalling. Detailed knowledge about channel gating is essential for our understanding of channel function in general and of drug action of channels in particular. Despite a number of recent atomic channel structures, the opening of voltage-gated channels is the subject of heated debates. Here we will discuss two of the controversies: ...

متن کامل

A Surprising Clarification of the Mechanism of Ion-channel Voltage-Gating

An intense controversy has surrounded the mechanism of voltage-gating in ion channels. We interpreted the two leading models of voltage-gating with respect to the thermodynamic energetics of membrane insertion of the voltage-sensing ‘module’ from a comprehensive set of potassium channels. KvAP is an archaeal voltage-gated potassium channel whose x-ray structure was the basis for determining the...

متن کامل

Specificity of Charge-carrying Residues in the Voltage Sensor of Potassium Channels

Positively charged voltage sensors of sodium and potassium channels are driven outward through the membrane's electric field upon depolarization. This movement is coupled to channel opening. A recent model based on studies of the KvAP channel proposes that the positively charged voltage sensor, christened the "voltage-sensor paddle", is a peripheral domain that shuttles its charged cargo throug...

متن کامل

Interaction between Extracellular Hanatoxin and the Resting Conformation of the Voltage-Sensor Paddle in Kv Channels

In voltage-activated potassium (Kv) channels, basic residues in S4 enable the voltage-sensing domain to move in response to membrane depolarization and thereby trigger the activation gate to open. In the X-ray structure of the KvAP channel, the S4 helix is located near the intracellular boundary of the membrane where it forms a "voltage-sensor paddle" motif with the S3b helix. It has been propo...

متن کامل

Calibrated Measurement of Gating-Charge Arginine Displacement in the KvAP Voltage-Dependent K+ Channel

Voltage-dependent ion channels open and conduct ions in response to changes in cell-membrane voltage. The voltage sensitivity of these channels arises from the motion of charged arginine residues located on the S4 helices of the channel's voltage sensors. In KvAP, a prokaryotic voltage-dependent K+ channel, the S4 helix forms part of a helical hairpin structure, the voltage-sensor paddle. We ha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 59  شماره 

صفحات  -

تاریخ انتشار 2008